
ArrayLists and Data

ProPublica Lab - Part 2 (one week)

1 Background and reminders

• Recall the difference between == and .equals(). If you aren’t sure, discuss
with a peer or a TA/instructor!

• The terms “Caucasian” and “White” are used interchangably (at least in the
U.S.). The dataset uses them as synonyms.

• As always, make sure your main method does not throw any Exceptions – it
should be handling them.

• As always, please check your work with the Verify files! Do not make
changes to these files; instead, make corrections to your work!

2 Finishing Your Data Storage

In the previous part of this lab assignment you created a class to store a single
row of the dataset. In this lab, we will create a class to store the full dataset.

As always, make sure you comment thoroughly throughout the lab.

2.1 Create a new class

Create a class that will represent the entire data set (not just one row). Think
carefully about what to name it, based on your understanding of the data, so that
it correctly indicates what data is being stored. Meaningful names are an essential
part of good programming practice!

1

2.2 The ArrayList field

We will store each row in an ArrayList. The ArrayList should hold the objects
you made in lab 1. Make a field in your dataset class that holds an ArrayList, and
make sure the datatype of the ArrayList is the object type you created in the last
lab.

2.3 Methods

2.3.1 Constructor

Add a constructor that initializes the field you created as a new ArrayList. It
should not take any parameters.

You should also write necessary getter and setter methods. Note that you
might add more as necessary as you go along.

2.3.2 Adding to the array list

Recall that the data is read into an ArrayList of String arrays. We need to iterate
through the data ArrayList, convert each row (String array) of the data ArrayList
into the object you made in the last lab, and add the object to the ArrayList in
this class.

Write a method that implements or helps to implement adding to the ArrayList
in the class you made. You may choose to design it how you see fit, but feel free
to refer back to the pre-lab for ideas.

Since exceptions may occur due to invalid or unexpected input, you will want
to have a try-catch statement to handle them.

2.3.3 Test your addition method

In your Main class, make a method called testAdding() to test the method you
just wrote. If you haven’t implemented toString() method in the last lab, you
may find it beneficial to do that now.

You might use JUnit as done in the last lab or print to check the list.

3 Reading in Data

3.1 About the Opencsv library

Opencsv is a library that allows you to read in data. You can read in data from
“compas-scores.csv” using the below code. You’ll also need to add the appropriate
imports - Eclipse can help you find them.

2

We will use CSVReaderHeaderAware from the OpenCSV library for this lab.
Because we are using HeaderAware reader, it understands that the first row is the
“header” and does not include it in the data.

The following code demonstrates how you should use it to read the data from
“compas-scores.csv”:

CSVReaderHeaderAware reader = new CSVReaderHeaderAware(

new FileReader("compas-scores.csv"));

ArrayList<String[]> myEntries = new ArrayList<String[]>(reader.readAll());

reader.close();

This will give you an ArrayList (myEntries), where each index is a String array
holding the row data. The indices in the String array correspond to the column
indices. For example, the following is a visualiazation myEntries:

< ["Male", "Other", "F", ...], // row 1

["Male", "African-American", "F", ...], // row 2

.... >

3.2 Add the data

After reading in the data, use it to populate your data structure in the class you
wrote. Answer the following questions in your README.md file (add a section below
your name and above the questions about difficulty/timing):

1. If any of your validation methods indicate that your precondition assump-
tions were not met by the data, document what preconditions were violated
and in what way. Update your validation methods one error at a time, docu-
menting all issues, until you can read in all the data. If this did not happen,
mention that.

2. Describe a person who would generate data that would not pass your (up-
dated) precondition assumptions.

As a last resort after updating your pre-conditions, you should make sure you
skip any rows that cause errors so that the data processing continues. Hint: if
you’re having trouble with this, where could you put the try-catch statement so that
the “trying” happens for each row?

4 Replicate the Analysis

Now that you have the data read into your data structure, we can reproduce the
analysis ProPublica shows in their chart “Prediction Fails Differently for Black
Defendants.”

3

4.1 Write the relevant methods

Recall how each percentage in the table was calculated. Read “Understanding
Propublica.pdf,” and discuss with a peer or an instructor if you need help.

In the data storage you created, write method(s) that iterate through the Ar-
rayList of objects you created in lab 1 and calculate the percentages (in decimals).
They should return the percentages as decimals (doubles).

4.2 Call the methods

Call these methods in your Main class’s main method. You can check your work
by making sure your numbers match the numbers in the ProPublica’s chart.

Take a look at PropublicaDataTable class (included with the starter files)
- specifically its constructor. Now that you know what you need to construct
an instance of the table, make a PropublicaDataTable object by passing your
numbers into the constructor.

Make sure you set the racialBiasTable instance variable to the correct table
in the main method (+/- 0.1 percent is okay). Feel free to print out the table.
Make sure you are able to run VerifyFormat Lab2.java and get a passing status.

5 Your Custom Analysis

What you have already done should not be altered by your work in this section.
This means you should write additional methods instead of changing the methods
you wrote so that your original methods stay the same.

You may especially want to commit and push the work you have done so far
as a checkpoint you can revert back to.

5.1 What counts as recidivism?

Find charges that, based on the r charge desc, you think should not count as
recidivism. Perform an additional analysis with these decisions - you may need to
write additional methods. Do this using an optionally run method so that you can
still run the previous version of the analysis. Describe the choices you made and
what the resulting analysis shows in your README.md.

4

	Background and reminders
	Finishing Your Data Storage
	Create a new class
	The ArrayList field
	Methods
	Constructor
	Adding to the array list
	Test your addition method

	Reading in Data
	About the Opencsv library
	Add the data

	Replicate the Analysis
	Write the relevant methods
	Call the methods

	Your Custom Analysis
	What counts as recidivism?

